	Inorganic Chemistry SEM VI sample MCQ's				
1	VBT can explain of transition metal complexes .				
	Magnetic property				
	Spectral property				
	Reaction mechanism				
	Temperature dependent paramagnetism				
2	In octahedral complex, the metal orbitals directly pointed towards the ligand will experience				
	Less repulsion				
	More attraction				
	More repulsion				
	Less attraction				
3	The symbol t refers toof orbitals				
	Single degeneracy				
	Double degeneracy Triple degeneracy				
	Triple degeneracy Tetra degeneracy				
4	The difference in energy between two sets of d- orbitals in octahedral complexes is denoted by				
-	The difference in energy between two sets of a brotains in betained a complexes is denoted by				
	$oxedsymbol{\Delta_{ ext{t p}}}$				
	$\Delta_{ m t}$				
	$\Delta_{ m sp}$				
	$\Delta_{ m o}$				
5	In octahedral field, d orbitals split as				
	t_{2g} and e_g				
	t_{1g} and t_{g}				
	t _{2u} and e _g				
	t _{lu} e g				
6	The complex [Fe F ₆] ⁻³ will be in nature.				
	Community Demonstrated				
	Strongly Paramagnetic				
	Diamagnetic Ferromagnetic				
	Weakly paramagnetic				
7	The d-orbitals undergo splitting to a in presence of weak field ligands.				
'	The a oronais analysis spinning to a in presence of weak field figures.				
	Greater extent				
	Lesser extent				

	Equal extent
	Do not split
8	Which of the following is weak field ligand?
	F ⁻
	CN ⁻
	CO
	en
9	The colour of $[Ti(H_2O)_6]^{+3}$ is due totransition.
	Metal to Ligand Charge Transfer
	Ligand to Metal Charge Transfer
	d-d
	f-f
10	Electron – electron repulsions in the complex will be the least.
	Bromo
	Iodo
	Aqua
	ammine
11	The nephelauxetic effect is minimum incomplexes.
	Fluoro
	Chloro
	Bromo
	Iodo
12	The order of increasing energy of d orbital in square planar complex is
	$dxz = dyz < dz^2 < dxy < dx^2 - y^2$
	$dz^2 < dz$
	$dx^2-y^2=dxy$
	<dxz=dyz< th=""></dxz=dyz<>
	dxz=dyz>
	$dxy = dx^2 - y^2 < dz^2$
42	
13	The magnetic moment of [Fe $(H_2O)_6$] ⁺³ complex is
	1.73 B.M
	2.82 B. M
	5.9 B.M
	4.89 B.M
ı	ן דויט שוויים (איי שוויים איי

14	Molecular orbitals are formed by combining atomic orbitals which have
	disimilar energies
	different symmetry along the bond axis
	electrons with opposite spin
	electrons with same spin
15	According to group theory, s orbital is assigned symmetry symbol.
13	symmetry symbol.
	a_{1g}
	t_{lg}
	t_{2g}
	e_{g}
16	In a π bonded octahedral complex, vacant ligand π orbitals are at a energy compared to metal t ₂ g orbitals.
	higher
	lower
	same
	equal
17	Among the following complexes is more stable
	(K values for hydroxo complexes are given below)
	$K_{LiOH} = 2$
	$K_{\text{MgOH}}^{+} = 10^{2}$
	$K_{YOH}^{2+} = 10^7$
	$K_{ThOH}^{3+} = 10^{10}$
18	The formation of the complex MLn may also be expressed by the following steps and equilibrium constants.
	A = A = A = A = A = A = A = A = A = A =
	$M + L \longrightarrow ML, \qquad p = \frac{1}{[M][L]}$
	$M + L \xrightarrow{B_1} ML, \qquad \beta = \frac{(ML)}{[M][L]}$ $M + 2L \xrightarrow{B_2} ML_2, \beta_2 = \frac{(ML_2)}{[M][L]^2}$
	$M + 2L \xrightarrow{B_2} ML_2$, $\beta_2 = \frac{(ML_2)}{R_1 + R_2}$
	Then $M = H = \frac{B_n}{N} \times M = \frac{\rho}{N}$ (MLn)
	Thus M + nL $\xrightarrow{B_n}$ MLn, $\beta_n = \frac{(MLn)}{[M][L]^n}$
	The equilibrium constants, β_1 , β_2 , β_n are called
	The equinorium constants, p_1, p_2, \dots, p_n are called
	Instability constants
	stepwise stability constants
	overall formation constants
	Stepwise dissociation constant
	Diepwise dissociation constant

19	Dissociation constant of $[Ag(NH_3)_2]^+ = 6 \times 10^{-6}$;					
	$[Cd (NH_3)_4]^{+2} = 2.5 \times 10^{-7}$; Which complex among the two is more stable?					
	$[Cd (NH_3)_4]^{+2}$					
	$[Ag(NH_3)_2]^+$					
	Both 1 and 2					
	Either Cd $(NH_3)_4]^{+2}$ or					
	$[Ag(NH_3)_2]^+$ depending on temperature					
20						
	In complex compounds, metal acts as a / an,					
	The complex compounds, metal acts as a van,					
	electrophile					
	nucleophile					
	electron donor					
	Electron acceptor					
21	Complexes with one or more vacant inner orbitals are labile.					
	S					
	\mathbf{f}					
	p					
	d					
22	Acid hydrolysis takes place at a p H					
	less than 3					
	equal to 5					
	equal to 7					
	greater than 10					
23	Intra ligand transitions involve the transition of electrons from one					
23	ligand orbital to another ligand orbital					
	ligand orbital to another metal orbital					
	metal orbital to another metal orbital					
	Metal to ligand orbital					
24	transitions produce the most intense bands.					
24	Intra ligand					
	f— d					
	Charge transfer					
25	d-d The number of numerical entire for a Quartet state, is					
25	The number of unpaired spins for a Quartet state is					
	5					
26	is an example of electron deficient organometallic compound.					

	$Hg(CH_3)_2$
	Be 2(CH ₃) ₆
	$Mn_2(CO)_{10}$
	CH ₃ CH ₂ MgX
27	Dimethyl Magnesium assumesstructure.
	Dimeric
	Trimeric
	Polymeric
	Tetrameric
28	Which of the following organometallic compounds are most stable towards oxygen?.
	Trialkyls of Group 13
	Tetra alkyls of Group 14
	Trialkyls of Group 15
	Dialkyls of Group 16
29	The metathesis reaction,
	$MR + EX \longrightarrow MX + ER$
	will take place when
	M is less electro negative than E
	M is less electro-negative than E M is more electronegative than E
	M and E have same electro-negativity
	Does not depend on electronegativity values of M and E
	Does not depend on electronegativity values of M and E
30	Sandwich compounds are
	Sultantial composition and minimum.
	Regular aliphatic compounds
	Organometallic compounds
	Ionic
	compounds
	Electron deficient compounds
31	Ni (CO) ₄ is a
	metallocene
	sandwich compound
	aromatic compound
22	organometallic compound
32	Ferrocene undergoes most of the

	nucleophilic reactions
	electrophilic reactions
	oxidation reactions
	polymerisation reactions
	porymensation reactions
33	The structure of Ferrocene was confirmed by
	NMR spectra
	X-ray analysis
	UV studies
	IR spectra
34	Catalyst/s that is/are present in the same phase as
34	that of the reagent is/are
	that of the reagent is/are
	hotorogonoous ootolyat
	heterogeneous catalyst homogeneous catalyst
	Both homogenous and heterogenous catalyst
	Either homogenous or heterogenous
25	Catalyst.
35	Catalysts are
	Solids
	Liquids
	Gases
	Any of these
36	Generally, only one type of active site is available in the case of
	Homogeneous catalysts
	Heterogeneous catalysts
	Both 1 and 2
	Autocatalysis
37	Catalyst can improve
	productive capacity
	quality of the products
	Selectivity
	all of these
38	A metal never found in the free state is
36	A metal nevel found in the free state is
	Au
	1.400

	Ag					
	Cu					
	Fe					
39	Blast furnace is employed in the smelting of oxides orewith coke and flux in the metallurgy of					
	iron					
	copper					
	Lead					
	all the above					
40	In the blast furnace, maximum temperature is in					
	zone of fusion					
	Zone of combustion					
	zone of slag combustion					
	zone of reduction.					
41	The highest temperature is achieved in which type of furnace					
41	The highest temperature is achieved in which type of furnace					
	Blast					
	Reverberatory Electric					
	Muffle					
42	With the second					
72	Which of the following outer electronic configuration represents argon					
	William of the following owner close comagnitudes represente angul					
	ns^2					
	10^{10} ns ² np ⁶					
	$\frac{1}{\text{ns}^2\text{np}^5}$					
	ns ² np ⁶ ns ² np ⁵ ns ² np ⁴					
43	XeF ₄ and XeF ₆ are expected to be					
	Oxidising					
	Reducing					
	Unreactive					
	Strongly basic					
44						
	Argon was discovered by					
	Rayleigh					
	Frankland&Lockyer					
	Jansen					
	Ramsay					

45	In XeF ₂ XeF ₄ and XeF ₆ , the number of lone pairs on Xe are, and respectively: 2,3,1
	1,2,3
	3,2,1
4.0	4,1,2 Most should at slowerts in the living he dies are
46	Most abundant elements in the living bodies are
	Si
	Ca
	Ni
	F
47	Excess of Manganese leads to
	Lung disease
	Anaemia
	Goiter
	Psychiatric disorder
48	Deficiency of zinc causes
	Inhibited growth
	Anemia
	Goiter
40	Lung disease
49	Na +, K+ ion pump was discovered by
	Newton
	Zens Christies skou
	Einstein
	Faraday.
50	The arrangement of ligands in the order of increasing field strength is called
	Spectrochemical series
	Biochemical series
	Lanthanide series
	Spectrobiochemical series