T.Y. BMS subject: Operations research

Q1	The value of objective function maximum under linear constraint					
	a) At the centre of feasible region					
	b) At (0,0)					
	c) At a vertex of feasible region					
	The vertex which is of maximum distance from origin (0,0)					
2	The maximum value of z= 10x + 6y subjected to the constraints $3x+y \le 12$, $2x + 5y \le 34$					
	x, γ≥ 0					
	a) 56					
	b) 65					
	c) 55					
	d) 66					
3	Feasible region is the set of points which satisfy-					
-	a) The objective function					
	b) All of the given constraint					
	b) All of the given constraintc) Some of the given constraints					
	Only one constraint					
4	The half plane represented by $4x + 3y > 14$ contains the point					
	a) (0,0)					
	b) (2,2)					
	c) (3,4)					
	(1,1)					
5	While solving a LP model graphically, the area bounded by the constraints is called					
	a) Feasible region					
	b) Infeasible region					
	c) Unbounded region					
	None of these					
6	The true statement for the graph of inequations 3x+2y≤6 and 6x+4y≥20 , is					
	A Both graphs are disjoint					
	B. Both do not contain origin					
	C. Both contain point (1, 1)					
	D. None of these					
7	When artificial variables appear in the optimal solution, we say the problem is					
	A . Degenerated					
	B. Unbounded					
	C .Infeasible					
0	D. none of these					
8	maximization simplex problem solution is optimum if $\Delta i j$ row					
	a should be positive					
	b should be negative					
	c should be negative or zero					
	d should be zero					

9	10	0 0		0	10		
		0 0	2	0	10		
	<i>x</i> ₂	$\frac{1}{2}$ 1	$\frac{1}{2}$	0	52		
	<i>x</i> ₄	$\frac{1}{2}$ 0	-2	1	$\frac{3}{2}$		
	z	0 0	2	0	10		
	<i>x</i> ₂	0 1	1	-1	1		
	<i>x</i> ₁	1 0	$^{-1}$	2	3		
	Solution is						
	A Degenerad	· ·					
	B unbounded						
	C infeasibility D none of the						
10	The Z _i row in		le for ma	ximizatior	represents		
10	A profit per u						
	B gross profit						
	C constraints						
11	D net profit	workers and	i o ho tho	ro would b			
11	if there are n a n! solution	workers and r	i jobs the	re would L	ie		
	b (n-1)! Soluti	on					
	c (n!)n solutio						
	d n solution						
12	the assignment	•					
	b is special ca	•	•	-	each resource	25	
	c can be used		-				
	d all of the ab		,,				
13	the assignme	nt problem					
		-			ned to each re	sources	
		pecial case of	•	•			
		e used to mini	mize obje	ective runc	tion		
14	dall of the abovean assignment problem is considered as particular case of transportation problem						n
	-	of rows equal		-	condiions are1		
		j=0 or1 c.					
	d.all	of the above					
45	c. PERT analys	ia ia baaad a	2				
15	-		1				
	A. Optimistic	time					
	B. Pessimisti	c time					
	C. Most likely	' time					
	D. All the abo	ove.					
16	The earliest s	start time rule					
	A) Compares	the activities	starting	time for a	n activity succe	essor.	
	B) Compares	the activities	end time	e for an ac	tivity predeces	ssor.	

	C) Directs when a project can start.			
	D) Regulates when a project must begin.			
17	PERT analysis is based on <u>A. optimistic time</u> <u>B. pessimistic time</u> <u>C. most likely time</u> D. all the above.			
18	While scheduling a project by C.P.M.A. a project is divided into various activitiesB. required time for each activity is establishedC. sequence of various activities is made according to their importanceD. All the above.			
19	An event is indicated on the network by a number enclosed in <u>A. a circle</u> <u>B. a square</u> <u>C. a triangle</u> <u>D. all the abov</u>			
20	If TL is the latest allowable event occurrence time, total activity slack(s), is equal to <u>A. LST-EST</u> <u>B. LFT- EFT</u> <u>C. TL-EFT</u> <u>D. all the above.</u>			
21	The full form of PERT is a) Program Evaluation and Rate Technology b) Program Evaluation and Robot Technique c) Program Evaluation and Robot Technology d) Program Evaluation and Review Technique			
22	The full form of CPM is a) Critical Path Method b) Control Path Method c) Critical Plan Management d) Control Path Management			
23	 a) Possible time in which an activity can be achieved under ideal circumstances is known as a) Pessimistic time estimate b) Optimistic time estimate c) Expected time estimate d) The most likely time estimate 			
24	The difference between the maximum time available and the actual time needed to perform an activity is known as a) Free float b) Independent float c) Total float d) Half float			
25	Which of the following is not a phase of project management? a) Project planning b) Project scheduling			

	c) Project controlling d) Project being
26	 is a mathematical technique used to solve the problem of allocating limited resource among the competing activities A. Linear Programming problem B. Assignment Problem C. Replacement Problem D. Non linear Programming Problem
27	Operations Research approach is A. multi-disciplinary B. scientific C. intuitive D. collect essential data
28	 A feasible solution to a linear programming problem A. must satisfy all the constraints of the problem simultaneously B. need not satisfy all of the constraints, only some of them C. must be a corner point of the feasible region. D. must optimize the value of the objective function
29	To proceed with the Modified Distribution method algorithm for solving an transportation problem, the number of dummy allocations need to be added are A. n B. n-1 C. 2n-1 D. n-2
30	A set of feasible solution to a Linear Programming Problem is A. convex B. polygon C. triangle D. bold

31	The solution to a transportation problem with m-sources and n-destinations is feasible if the numbers of allocations are A. m+n B. mn C. m-n D. m+n-1
32	The allocation cells in the transportation table will be called cell A. occupied B. unoccupied C. no D. finite
33	To resolve degeneracy at the initial solution, a very small quantity is allocated in cell A. occupied B. unoccupied C. no D. finite
34	When the sum of gains of one player is equal to the sum of losses to another player in a game, this situation is known as A. two-person game B. two-person zero-sum game C. zero-sum game D. non-zero-sum game
35	 The transportation problem is balanced, if A. total demand and total supply are equal and the number of sources equals the number of destinations. B. none of the routes is prohibited C. total demand equals total supply irrespective of the number of sources and destinations D. number of sources matches with number of destinations

36	 An alternative optimal solution to a minimization transportation problem exists whenever opportunity cost corresponding to unused route of transportation is: A. Positive & greater than zero B. Positive with at least one equal to zero C. Negative with at least one equal to zero D. None of the above
37	In game theory, the outcome or consequence of a strategy is referred to as the A. payoff. B. penalty. C. reward. D. end-game strategy.
38	is the process of determining which job to start first and in what order other jobs should be processed on the machine or in work centre A. Job sequencing B. Priority Rules C. Batch Production D. None of these
39	What is saddle point? A. Equilibrium Point B. Balance Growth Point C. Imbalanced Growth Point D. Unstable Equilibrium Point
40	The strategy minimizes the maximum loss in a game. A. minimum B. maximum C. Mixed D. minimax
41	 Game theory is concerned with A. predicting the results of bets placed on games like roulette. B. the choice of an optimal strategy in conflict situations. C. utility maximization by firms in perfectly competitive markets. D. the migration patterns of caribou in Alaska
42	When a saddle point is present a strategy exits A. Pure B. Mix C. Optimal

	D. Zerosum	
43	An order for a transportation which has 6 rows and 4 columns, not to be degenerate, how	
	much must be the allocated cells in the matrix	
	A. 6	
	B. 9	
	C. 15	
	D. 24	
44	In sequencing the time involved in moving jobs from one machine to another is	
	A. negligible	
	B. positive number	
	C. significant	
	D. None of them	
45	time is a time on a machine for which the machine does not have a	
	job to process	
	A. Idle	
	B. Elapsed	
	C. Processing	
16	D. None of the above	
46	order refers to the order in which machines are required for completing	
	the job	
	A. Processing B. Sequencing	
	C. Assigning	
	D. None of the above	
47	Pure Strategy games are normally solved by method	
47	A. Saddle Point	
	B. Minimax	
	C. Maximin	
	D. None of the above	
48	In a transportation problem, we must make the number of and	
	equal.	
	A. destinations; sources	
	B. units supplied; units demanded	
	C. columns; rows	
	D. warehouses; suppliers	
49	operation is carried out on a machine at a time	
	A. Two	
	B. at least one	
	C. only one	
	D. None of them	
50	What is meant by 'Payoffs' in Game Theory?	
	A. Outcome of a game when different alternatives are adopted by players	
	B. No. of players involved in a game	
	C. Value of a game	
	D. Strategies used by players	