	Question Bank(Unit III,IV,V)																				
1	Find Spearman's Rank Correlation coefficient:																				
	Income (in thousands)				40		80	50	0	70	0	60		30	20						
	Expenditure(in thousands)				30		40	30	0	60		40	20	20	10						
2	Describe Scatter diagram method to find correlation.																				
	The two lines of regression are $2 y+4 x=80$ and $6 x+5 y=160$. Find (i) Mean values of x and y (ii) Identify the regression equation of x on y																				
3	For the following data calculate: (i) Laspeyre's (ii) Paasche's and (iii) Fischer's Index number.																				
	Commodity		Base Year							Current Year											
			Price				Quantity			Price				Quantity							
	A		3				9			5			8								
	B		6				11			7			5								
	C		5			15				6			11								
	D			3			20			3			14								
4	Explain the components of Time Series.																				
5	Calculate cost of living Index Number from the following data:																				
	Commodity		Weight				Price in Rupees														
			Base Year	Current Year																	
	Food						7				10						12				
	Clothing		4				6					10									
	Housing Rent		3				4					6									
	Fuel and lighting		1				2					2									
	Miscellaneou		5				8					12									
6	Obtain the five yearly moving averages for the following data representing exports(in lakhs of rupees) of a company during 1996-2005.Plot the given data and five yearly moving averages(trend values) on a graph paper.																				
	Year	1996		1997		998	199		200		200		2002		03	2004	2005				
	Exports	46		50	56	6	63		70		74		82	90		95	102				
7	Find Karl Pearson's correlation coefficient for the following:																				
	Income	5	7	6	8																
	Expenditure	1	3	4	2																

16	Construct the 3 yearly moving averages of students studying in a self financing course in a college is shown below.										
	Year	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
	No. of Students	33	31	35	39	40	41	42	40	38	38
	Also represent the original time series and the moving averages on a graph paper.										
17	Find weighted aggregate index number for the following data:										
		Commodity		Price			Price		Weight		
				201			2020				
		A		3					1		
		B		4							
		C		5					4		
18	A variate X follows Poisson distribution with mean 0.2. Find (i) $P(X=0)$ (ii) $P(X>1) . \quad\left[\right.$ Given : $e^{-0.2}=0.8187$)										
19	If a Poisson variate X is such that $P[X=1]=P[X=2]$, find $P[X=4]$. [Given $e^{-2}=0.1353$]										
20	In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 3.Assuming the distribution to be normal, find how many candidates score between 5 and 20? [Given : Area between $z=0$ and $z=3$ is 0.4986 Area between $z=0$ and $z=2$ is 0.4772]										
21	The distribution of marks of 3000 students is normally distributed with mean 600 and standard deviation 100. Find the number of students having marks more than 775. (Area between $\mathrm{z}=0$ and $\mathrm{z}=1.75$ is 0.4599)										
22	X is a normal variate with mean 30 and variance 25 . Find the probabilities that (i) $\quad x>42$ (ii) $x<28$ [Given : Area between $z=0$ and $z=2.4=0.4918$ Area between $z=0$ and $z=0.4=0.1554$]										
23	The number students passing in an exam is normally distributed with mean 60 and standard deviation is 10 . What is the probability of getting more than 70 ? (area between $\mathrm{Z}=0$ and $\mathrm{Z}=1$ is 0.3441)										
24	It is observed that 50% of the students are swimmer. If 3 students are selected at random from 5 , what is the probability that only one is a swimmer?										
25	Number of road accidents on a highway during a month follows a Poisson Distribution with mean 5 . Find the probability that in a a certain month number of accidents in the highway will be less than 3. $e^{-5}=0.006738$										
26	The weight of a packet of biscuits are normally distributed with mean 0.172 gm and standard deviation 5 gm . If 1000 packets are observed, how many packets have weight greater than 180 gm . (Area between $\mathrm{Z}=0$ and $\mathrm{Z}=1.6$ is 0.4452)										

	Marks 1	10	3	5	8	9			
	Marks 2	7	6	2	3	4			
									Calculate the Spearman's rank correlation coefficient for the following:
	Marks1 30 40 50 10 40 70 Marks2 75 32 45 15 20 45								

