Q2. 1. An amount of Rs. 15,000 is invested at 8% p.a. compounded annually, calculate amount after 3 years and interest in $3^{\text {rd }}$ year.
2. Find the accumulated value after 4 years of an immediate annuity of Rs.20,000p.a. with interest compounded at 6% p.a.
3. A manufacturer has put Rs. 30,000 as initial cost and a variable cost of Rs. 20 per unit for production of batteries. If each battery can be sold at Rs. 40 , find total cost, total revenue ,profit functions. Also find the number of batteries to be produced to achieve the break- even point of no pro.fit, no loss.
4. Find the value of the total cost and average cost at $x=1,4$ if the total cost function is
(i) $C=2+5 \cdot x+x^{2}$
(ii) $C=10+3 x^{2}$
5. A car was brought at Rs.5,40,000. Find its resale price after 3 years by considering 8% depreciating p.a.
6. An amount of Rs. 35,000 resulted into Rs. 52,000 after a certain period, at 10% p.a. rate of simple interest. Find the period

Q3. 1. Solve the equations using Cramer's Rule
$5 \mathrm{x}+3 \mathrm{y}-2 \mathrm{z}=6 ; 3 \mathrm{x}+3 \mathrm{y}-4 \mathrm{z}=2 ; 8 \mathrm{x}+2 \mathrm{y}-3 \mathrm{z}=7$
2. If $A=\left[\begin{array}{ll}3 & \\ 1 & 4\end{array}\right]^{7} \quad$ and $B=\left[\begin{array}{ll}2 & \\ -1 & 0\end{array}\right]$

Find i) $(A+B)(A-B) \quad$ ii) $A^{2}-B^{2}$
3. If $A=\begin{array}{cccc}2 & 1\end{array}, B=\begin{array}{cc}3 & 0\end{array} \quad$ find $A^{2}+2 B-I$ and $5 A+3 B$
4. Solve the equations using Cramer's Rule
$5 \mathrm{x}-\mathrm{y}+\mathrm{z}=5 ; 3 \mathrm{x}+\mathrm{y}-\mathrm{z}=3 ; 2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=10$
5. .If $A=\begin{array}{ll}2 & 5 \\ 1 & 4\end{array}$ and $B=\begin{array}{ll}3 & 7 \\ 6 & 3\end{array}$ find $2 A+3 B$ and $5 A-B$
6. What is matrix and explain the types of matrices.

Q4. 1. The demand function is given by $p=40+12 D-3 D^{2}$ where $p=$ price and $D=$ demand. Find the total revenue, average revenue and marginal revenue when the demand is 5 units
2. Find maxima and minima for the function given below

$$
f(x)=x^{3}-9 x^{2}+24 x+7
$$

3. Find $d y / d x$ if 1) $y=e^{x} \cdot 5^{x}$
2) $y=7^{x}-2 x^{7 / 2}+3 \log x-x+25$
4. The cost of manufacturing x items of a product is given by
$C=2 x^{2}+3 x+10$. Find the total cost, average cost, marginal cost and the marginal average cost if 10 items are manufactured
5. Find dy/dx if
i) $y=x^{3}-\log x+e^{x}+4^{x}+25$
ii) $y=\left(x^{2}-2 x+5\right) / e^{x}$
6. Find maxima and minima of the function

$$
f(x)=2 x^{3}-9 x^{2}-24 x+11
$$

Q5. 1. Prepare the forward difference table for the function $f(x)=x^{3}+3 x+1$
for $\mathrm{x}=0,1,2,3,4,5$
2. Find $d^{2} y / d x^{2}$ if 1) $y=x^{3}-5 x^{2}+10 x+30 \quad$ 2) $y=4 e^{x}+2 \log x-3^{x}$
3. Explain Demand ,Supply, Marginal cost and revenue, Elasticity of Demand
4. Prepare the forward difference table for the function $f(x)=x^{3}+2 x-3$
for $\mathrm{x}=0,1,2,3,4,5$.
5. Find $d^{2} y / d x^{2}$ if 1) $y=x^{4}+e^{x}+5^{x}-\log x+7$
2) $y=5 x^{3}+3^{x}-e^{x}$
6. Explain Cost , Revenue and Profit functions.

